
This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

J. ALGEBRAIC GEOMETRY
30 (2021) 457–476
https://doi.org/10.1090/jag/767

Article electronically published on January 15, 2021

HOMOLOGICAL PROJECTIVE DUALITY
FOR QUADRICS

ALEXANDER KUZNETSOV AND ALEXANDER PERRY

Abstract

We show that over an algebraically closed field of characteristic not equal
to 2, homological projective duality for smooth quadric hypersurfaces
and for double covers of projective spaces branched over smooth quadric
hypersurfaces is a combination of two operations: one interchanges a
quadric hypersurface with its classical projective dual and the other
interchanges a quadric hypersurface with the double cover branched
along it.

1. Introduction

The theory of homological projective duality (HPD) was introduced in [6] as

a way to describe derived categories of linear sections of interesting algebraic

varieties. Since then it was generalized to the noncommutative situation [15]

and significantly developed in [13]. See [8] and [18] for surveys of the subject.

Roughly, HPD says that the derived categories of linear sections of a smooth

projective variety mapping to a projective space X → P(V ) are governed

by a single (noncommutative) algebraic variety X� → P(V ∨) over the dual

projective space, called the HP dual of X. The computation of X� thus

becomes the main step in understanding these categories.

It is no surprise then that the computation of HP duals is quite hard in

general. There are not so many examples for which an explicit geometric

description of the HP dual is known; most are listed in [8] (see also [16], [17],

and [9, §§C–D] for examples that appeared later). One of the most basic

examples, HPD for smooth quadrics, was stated in [8, Theorem 5.2] without

proof. The goal of this paper is to supply a proof.
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To give a precise statement, which we call quadratic HPD, recall that HPD

deals with varieties f : X → P(V ) that are equipped with a Lefschetz struc-

ture, which is a special type of semiorthogonal decomposition of the bounded

derived category of coherent sheaves Db(X) (see §2.1). In Theorem 1.1 below,

both f : Q → P(V ) and f � : Q� → P(V ) are equipped with natural Lefschetz

structures defined in terms of spinor bundles (see Lemma 2.4).

We work over an algebraically closed field k of characteristic not equal to 2.

Recall that the classical projective dual of a smooth quadric hypersurface

Q ⊂ P(V ) is itself a smooth quadric hypersurface Q∨ ⊂ P(V ∨). The HP dual

of Q is more subtle:

Theorem 1.1. Let f : Q → P(V ) be either the embedding of a smooth

irreducible quadric hypersurface or a double cover branched along a smooth

quadric hypersurface, equipped with its natural Lefschetz structure as in

Lemma 2.4. The HP dual f � : Q� → P(V ∨) of f : Q → P(V ) is given as

follows:

(1) If f is an embedding and dim(Q) is even, then Q� = Q∨ is the classical

projective dual of Q and f � : Q� → P(V ∨) is its natural embedding.

(2) If f is an embedding and dim(Q) is odd, then f � : Q� → P(V ∨) is the

double cover branched along the classical projective dual of Q.

(3) If f is a double covering and dim(Q) is even, then f � : Q� → P(V ∨) is

the classical projective dual of the branch locus of f .

(4) If f is a double covering and dim(Q) is odd, then f � : Q� → P(V ∨) is

the double cover branched along the classical projective dual of the branch

locus of f .

In all cases Q� is considered with the Lefschetz structure defined in Lemma 2.4.

An important ingredient in HPD is the HPD kernel, which is an object

E ∈ Db((X ×X�)×P(V )×P(V ∨) H),

where H ⊂ P(V ) × P(V ∨) is the incidence divisor, that provides all of the

important functors. At the end of the paper (Remark 3.2) we describe the

HPD kernels for quadratic HPD.

Theorem 1.1 is a key ingredient in [12], where using categorical cones we

bootstrap to a description of HPD even when Q is not smooth and its image

does not span P(V ). As shown in [12], this leads to a powerful description of

the derived categories of quadratic sections of varieties, which among other

things proves the duality conjecture for Gushel–Mukai varieties from [11].

In general the HP dual of a Lefschetz variety is noncommutative (i.e., is

a suitably enhanced triangulated category, see the discussion before Defini-

tion 2.1), but quadratic HPD turns out to be a purely commutative statement.
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Thanks to this, in the present paper we do not need the noncommutative

setup of [15]. However, we need some results on HPD that were proved in [15]

and [12]; to reformulate the corresponding statements in the commutative

setup of this paper, one just has to replace Lefschetz categories by derived

categories of Lefschetz varieties.

The paper is organized as follows. In §2 we briefly review the theory of

HPD and describe the Lefschetz structure of a quadric. Then in §3 we prove

Theorem 1.1.

All functors (pullbacks, pushforwards, tensor products) in this paper are

derived, and the base field k is an algebraically closed field of characteristic

not equal to 2.

2. HPD and the Lefschetz structure of quadrics

In this section, we begin by describing the framework of HPD. Then we

explain how quadrics can naturally be regarded as Lefschetz varieties, and

hence can be considered as objects of this theory.

2.1. Homological projective duality. We recall the basics of HPD in

the form presented in [15] and [13], but to simplify the exposition we focus

on the purely smooth and proper commutative setting, which is sufficient for

our purposes.

Let X be a smooth proper variety over k, and let f : X → P(V ) be a mor-

phism to a projective space. We denote by Db(X) the bounded derived cate-

gory of coherent sheaves on X. A Lefschetz center of Db(X) is an admissible

subcategory A0 ⊂ Db(X) such that there are semiorthogonal decompositions

(2.1)
Db(X) = 〈A0,A1(1), . . . ,Am−1(m− 1)〉,
Db(X) = 〈A1−m(1−m), . . . ,A−1(−1),A0〉,

called respectively the right and left Lefschetz decomposition of Db(X), whose

components, called the Lefschetz components of Db(X), form two chains of

admissible subcategories

0 ⊂ A1−m ⊂ · · · ⊂ A−1 ⊂ A0 ⊃ A1 ⊃ · · · ⊃ Am−1 ⊃ 0.

Here, Ai(i) denotes the image of Ai under the autoequivalence of D
b(X) given

by tensoring with f∗OP(V )(i). We call f : X → P(V ) a Lefschetz variety if

it is equipped with a Lefschetz center A0 ⊂ Db(X). By [15, Lemma 6.3] the

existence of one of the decompositions (2.1) implies the existence of the other,

the components Ai are completely determined by the Lefschetz center A0,

and Am−1 �= 0 if and only if A1−m �= 0. The minimal m with this property
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is called the length of the Lefschetz variety X. We say X is moderate if

m < dim(V ) (see [13, Remark 2.12] for a discussion of this notion).

Let H ⊂ P(V )×P(V ∨) be the natural incidence divisor. Let

H(X) := X ×P(V ) H,

so that we have a commutative diagram

H(X)
δ ��

��

X ×P(V ∨)

��

�� X

f

��

H ��

����
���

���
���

� P(V )×P(V ∨) ��

��

P(V )

P(V ∨)

with cartesian squares. We denote by

πX : H(X) → X and hX : H(X) → P(V ∨)

the natural projections.

The HPD category of a Lefschetz variety f : X → P(V ) is the triangulated

subcategory of Db(H(X)) defined by

Db(X)� :=
{
F ∈ Db(H(X)) | δ∗(F) ∈ A0 �Db(P(V ∨))

}
.

Here, A0�Db(P(V ∨)) denotes the triangulated subcategory of Db(X×P(V ∨))

generated by box tensor products of objects in each factor. The HPD cate-

gory can alternatively be characterized by the P(V ∨)-linear semiorthogonal

decomposition

Db(H(X)) =
〈
Db(X)�,δ∗(A1(1)�Db(P(V ∨))), . . . ,

δ∗(Am−1(m− 1)�Db(P(V ∨)))
〉
,

(2.2)

where the Ai are the Lefschetz components of Db(X).

Morally, the HP dual variety of X is a variety whose derived category is

equivalent to the HPD category of X. A priori, the HP dual of X may not

exist as an algebraic variety. However, if X is moderate, then the HP dual

always exists as a noncommutative Lefschetz variety [15, Theorem 8.7(1)].

More precisely, Db(X)� has the structure of a P(V ∨)-linear category in the

sense of [15, §2]. The notion of a Lefschetz center extends to such categories,

and Db(X)� has a canonical Lefschetz center given by

(2.3) A
�
0 = γ∗π∗

X(A0) ⊂ Db(X)�,
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where γ∗ denotes the left adjoint of the inclusion γ : Db(X)� → Db(H(X)).

This gives Db(X)� the structure of a Lefschetz category over P(V ∨) and allows

us to make the following definition.

Definition 2.1. A Lefschetz variety f � : X� → P(V ∨) is HP dual to a

moderate Lefschetz variety f : X → P(V ) if there is a Fourier–Mukai kernel

E ∈ Db(H(X)×P(V ∨) X
�),

called the HPD kernel, such that the corresponding Fourier–Mukai functor

ΦE : D
b(X�) → Db(H(X))

induces a Lefschetz equivalence Db(X�) 	 Db(X)�, i.e., an equivalence that

identifies the Lefschetz centers on each side.

The definition of HPD can be conveniently reformulated as follows: if A0

and B0 are the Lefschetz centers of X and X�, then

ΦE : D
b(X�)

∼−−→ Db(X)� ⊂ Db(H(X)), and(2.4)

Φ∗
E(π

∗
X(A0)) = B0 ⊂ Db(X�),(2.5)

where Φ∗
E is the left adjoint functor of ΦE. Indeed, by (2.4) the functor ΦE

can be written as ΦE = γ◦φE, where φE : D
b(X�) → Db(X)� is an equivalence

and γ : Db(X)� → Db(H(X)) is the inclusion. Thus by the definition (2.3)

of the Lefschetz center A
�
0 ⊂ Db(X�), condition (2.5) can be rewritten as

φ∗
E(A

�
0) = B0. Since φ∗

E : D
b(X)� → Db(X�) is inverse to the equivalence φE,

this shows that ΦE identifies the Lefschetz centers of Db(X�) and Db(X)�.

To finish this brief introduction, we recall two important properties. First,

HPD is really a duality: if X� → P(V ∨) is the HP dual variety of a smooth

proper moderate Lefschetz varietyX → P(V ) with its natural Lefschetz struc-

ture, then the HP dual variety ofX� isX (see [6, Theorem 7.3] or [15, Theorem

8.9]). Second, there is a tight connection between HPD and classical projec-

tive duality. For instance, if the map f : X → P(V ) is an embedding, then

the classical projective dual X∨ ⊂ P(V ∨) coincides with the set of critical

values of the map X� → P(V ∨) from the HP dual variety [6, Theorem 7.9].

2.2. Spinor bundles and the Lefschetz structure of quadrics. Let

Q be a smooth quadric, i.e., an integral scheme over k which admits a closed

immersion into a projective space as a quadric hypersurface. We denote by

OQ(1) the restriction of the line bundle O(1) from this ambient space. The

main result of this paper is a description of the HP dual of Q. To make sense

of this, we need to specify the structure of a Lefschetz variety on Q, i.e., a

morphism to a projective space and a Lefschetz center of Db(Q).

First, we specify the class of morphisms that we consider.
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Definition 2.2. We say a morphism f : Q → P(V ) is standard if there is

an isomorphism

f∗OP(V )(1) ∼= OQ(1).

We call f nondegenerate if its image is not contained in a hyperplane of P(V ).

In this paper we will only be concerned with nondegenerate standard maps

of smooth quadrics; see [12, §5] for results about degenerate maps, which are

obtained using the nondegenerate case as a starting point. If f is standard

and nondegenerate, then it is either a divisorial embedding or a double cov-

ering. Indeed, by definition any standard morphism f is the composition of

an embedding Q ↪→ Pn as a quadric hypersurface followed by a linear em-

bedding Pn ↪→ P(V ) into a larger projective space, or by a linear projection

Pn ��� P(V ) to a smaller projective space. In the first case the embedding

must be an isomorphism in order for f to be nondegenerate, and in the second

case the map Pn ��� P(V ) must be linear projection from a point not on Q in

order for f to be a regular morphism. In the second case, f is then a double

cover of P(V ) branched along a quadric hypersurface.

The Lefschetz center of Q will be defined in terms of spinor bundles. We

follow [14] for our conventions on spinor bundles, and recall some of the key

facts here (see [14, Theorem 2.8]).

Let Q be a smooth quadric of even dimension 2d, and write H for the

hyperplane class so that O(H) = OQ(1). Let Spin(Q) be the universal covering

of the special orthogonal group SO(Q) associated with the quadric Q. Then Q

carries a pair of Spin(Q)-equivariant vector bundles S+ and S− of rank 2d−1,

called the spinor bundles.

Example 2.3. If d = 1, then Q ∼= P1 × P1 and one has S+ = O(−1, 0)

and S− = O(0,−1). If d = 2, then Q ∼= Gr(2, 4) and the bundles S+ and S−
are the two tautological subbundles of rank 2.

If d ≥ 2, then S+ and S− both have determinant OQ(−2d−2). Denoting

by S± the 2d-dimensional half-spinor representations of Spin(Q), there are

canonical exact sequences

0 → S+ → S+ ⊗ OQ → S−(H) → 0,

0 → S− → S− ⊗ OQ → S+(H) → 0.
(2.6)

Moreover, if f : Q → P(V ) is an embedding of Q as a quadric hypersurface,

the pushforwards of the spinor bundles have the standard resolutions

(2.7)
0 → S− ⊗ OP(V )(−H) → S+ ⊗ OP(V ) → f∗(S−(H)) → 0,

0 → S+ ⊗ OP(V )(−H) → S− ⊗ OP(V ) → f∗(S+(H)) → 0

(see, e.g., [3, Example 3.4], but note that [3] uses a different convention for

spinor bundles). Another nice property of spinor bundles is their self-duality
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up to a twist:

(2.8) S±(H) ∼=
{
S∨
±, if d is even,

S∨
∓, if d is odd.

Similarly, if Q is a smooth quadric of odd dimension 2d− 1, it carries one

spinor bundle S of rank 2d−1 that fits into an exact sequence

(2.9) 0 → S → S⊗ OQ → S(H) → 0,

where S is the spinor representation of Spin(Q), and such that

(2.10) S(H) ∼= S∨.

Moreover, if Q is represented as a hyperplane section of a smooth quadric Q′

of even dimension, then S is isomorphic to the restriction of either of the

spinor bundles S± on Q′,

(2.11) S ∼= S±|Q;

see [14, Theorem 1.4(i)].

In what follows, when Q is a smooth quadric of arbitrary dimension, we will

denote by S a chosen spinor bundle on it—the only one in the odd-dimensional

case, or one of the two in the even-dimensional case. With this convention,

we have the following result.

Lemma 2.4. Let f : Q → P(V ) be a standard morphism of a smooth

quadric Q. Let S denote a spinor bundle on Q. Then Q has the structure of

a Lefschetz variety over P(V ) of length dim(Q) with Lefschetz center

Q0 = 〈S,O〉 ⊂ Db(Q).

Further, if p ∈ { 0, 1 } is the parity of dim(Q), i.e., p = dim(Q) (mod 2), then

the nonzero Lefschetz components of Db(Q) are given by

Qi =

{
〈S,O〉 for |i| ≤ 1− p,

〈O〉 for 1− p < |i| ≤ dim(Q)− 1.

Proof. Kapranov’s semiorthogonal decomposition of the derived category

of a smooth m-dimensional quadric [5] gives

Db(Q) = 〈S+, S−,O,O(1), . . .O(m− 1)〉 if m is even,

Db(Q) = 〈S,O,O(1), . . .O(m− 1)〉 if m is odd.

Thus, in the odd-dimensional case we obtain the required Lefschetz structure.

In the even-dimensional case we use (2.6) to rewrite the decomposition in form

Db(Q) = 〈S+,O, S+(1),O(1), . . . ,O(m− 1)〉,
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(or similarly with S+ replaced by S−) and also obtain the required Lefschetz

structure. �
Remark 2.5. Let f : Q → P(V ) be a standard morphism of a smooth

quadric Q. Then we always regard Q as a Lefschetz variety using the center

from Lemma 2.4. If dim(Q) = 2d is even, there are two spinor bundles S+
and S−, so there is an apparent choice involved in the Lefschetz structure of Q.

However, there exists an (noncanonical) automorphism a of Q over P(V ) such

that a∗(S±) 	 S∓ (corresponding to the automorphism of the Dynkin diagram

of type Dd+1). The resulting autoequivalence a∗ of Db(Q) identifies the Lef-

schetz center of Lemma 2.4 defined by S = S+ with that defined by S = S−.

Hence, if dim(Q) is even, the structure of Q as a Lefschetz variety over P(V )

is still uniquely determined, up to noncanonical equivalence.

Remark 2.6. The Lefschetz center Q0 of Db(Q) can be also written as

Q0 = 〈O, S′∨〉,

where S′ = S if dim(Q) is not divisible by 4, and the other spinor bundle

otherwise. This follows from the exact sequences (2.6) and (2.9) and the

dualities (2.8) and (2.10).

3. Proof of Theorem 1.1

In this section, we prove Theorem 1.1. We divide the proof into a number

of steps, which we overview here. Most of the proof concerns case (1). In this

case dim(Q) = 2d, f : Q → P(V ) is a divisorial embedding, and we aim to

prove that the HP dual is given by Q∨ ⊂ P(V ∨), the classical projective dual

of Q. During the proof, we actively use the machinery of Clifford algebras;

we suggest [7] as a general reference for this subject.

We consider the universal hyperplane section H(Q) ⊂ Q × P(V ∨) as a

family of quadrics

(3.1) hQ : H(Q) → P(V ∨)

of dimension 2d− 1.

• In §3.1 we introduce a sheaf Cliff0(W) of Clifford algebras on P(V ∨) and use

the fibration hQ to isolate a semiorthogonal component of Db(H(Q)) equiva-

lent to the derived category Db(P(V ∨),Cliff0(W)) of modules over Cliff0(W).

• In §3.2 we use central reduction to rewrite Db(P(V ∨),Cliff0(W)) as the

Z/2-equivariant category Db(Z,R)Z/2 of the derived category of modules

over an Azumaya algebra R on the double covering Z of P(V ∨) branched

over the quadric Q∨.
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• In §3.3 we show that the Azumaya algebra R is Morita trivial, and thus

obtain an identification Db(Z,R)Z/2 	 Db(Z)Z/2 with the Z/2-equivariant

derived category of Z.

• In §3.4 we decompose the category Db(Z)Z/2 into two components:

Db(Q∨) and Db(P(V ∨)).

• In §3.5 we rewrite in a simpler form the embedding functor of Db(P(V ∨))

into Db(H(Q)).

• In §3.6 we check that the image of Db(P(V ∨)) together with the other com-

ponents of the semiorthogonal decomposition discussed in §3.1 generate

the Lefschetz part of Db(H(Q)), i.e., the subcategory of Db(H(Q)) gener-

ated by the components to the right of Db(Q)� in the decomposition (2.2)

forX = Q. This proves that the remaining component Db(Q∨) is equivalent

to the HPD category Db(Q)�. We check that this equivalence is given by

a Fourier–Mukai functor with kernel E on H(Q)×P(V ∨) Q
∨, thus verifying

part (2.4) of the definition of HPD.

• In §3.7 we describe the kernel E in terms of spinor bundles on Q and Q∨.

• In §3.8 we use this to check that the functor Φ∗ ◦ π∗
Q takes the Lefschetz

center of Q to that of Q∨, so condition (2.5) in the definition of the HP

dual holds.

• Finally, in §3.9 we deduce the remaining cases (2)–(4) of Theorem 1.1 from

case (1) by applying a result from [1].

In §§3.1–3.8, we assume as above that dim(Q) = 2d, f : Q → P(V )

is a divisorial embedding, and that the Lefschetz structure of Db(Q) is

chosen so that Q0 = 〈S+,O〉. Let H and H ′ denote the hyperplane classes on

P(V ) and P(V ∨), as well as their pullbacks to H(Q) and other varieties.

3.1. A decomposition of Db(H(Q)). Consider the family of quadrics

(3.1). Recall that by definition H(Q) is the zero locus of the tautological

global section of the line bundle O(H +H ′) on Q×P(V ∨). Therefore, H(Q)

sits as a family of (2d− 1)-dimensional quadrics in the projectivization of the

rank 2d+ 1 vector bundle on P(V ∨)

W := (hQ∗OH(Q)(H))∨

∼= coker(O(−H ′) → V ∨ ⊗ O)∨ ∼= ker(V ⊗ O → O(H ′)) ∼= ΩP(V ∨)(H
′),

and it is defined by the family of quadratic forms given by the composition

(3.2) O → Sym2 V ∨ ⊗ O → Sym2 W∨,

where the first morphism is given by the equation of Q and the second is

the tautological surjection. By [7, Theorem 4.2] we have a semiorthogonal



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

466 ALEXANDER KUZNETSOV AND ALEXANDER PERRY

decomposition

(3.3) Db(H(Q)) = 〈Db(P(V ∨),Cliff0(W)),

h∗
Q(D

b(P(V ∨)))(H), . . . , h∗
Q(D

b(P(V ∨)))((2d− 1)H)〉,
where Cliff0(W) is the sheaf of even parts of the universal Clifford algebra on

P(V ∨) for this family of quadrics, and Db(P(V ∨),Cliff0(W)) is the bounded

derived category of Cliff0(W)-modules on P(V ∨). The embedding of this

category into Db(H(Q)) is given by the functor

(3.4) γ : Db(P(V ∨),Cliff0(W)) → Db(H(Q)), F �→ h∗
QF ⊗Cliff0(W) CS,

where CS is the sheaf of Cliff0(W)-modules on H(Q) defined by the exact

sequence

(3.5) 0 → O(−H)⊗ Cliff0(W) → O⊗ Cliff1(W) → i∗CS → 0

on H ∼= PP(V ∨)(W), where i : H(Q) ↪→ H is the natural embedding. Further-

more, Cliff1(W) is the pullback to H of the sheaf of odd parts of the Clifford

algebra, and the first morphism is induced by the Clifford multiplication.

We call CS the Clifford spinor bundle. Note that the space H is simply the

universal hyperplane in P(V ).

3.2. Central reduction. Next, we use the argument of [7, §3.6]
to describe the first component Db(P(V ∨),Cliff0(W)) of (3.3) in more

detail. We denote by Cliff(V ) the Clifford algebra of the quadric Q, and by

Cliff0(V ) and Cliff1(V ) its even and odd parts.

The family of quadratic forms (3.2) is given by a morphism O → Sym2 W∨

from a trivial line bundle, hence the Clifford multiplication provides the direct

sum Cliff0(W)⊕Cliff1(W) with an algebra structure. As a sheaf of O-modules

it has rank 22d+1 and can be written as

Cliff(W) = Cliff0(W)⊕Cliff1(W) ∼= O⊕W⊕∧2W⊕· · ·⊕∧2d+1W ⊂ Cliff(V )⊗O

and is naturally a subalgebra in Cliff(V ) ⊗ O. As explained in [7, §3.6], the
rank 2 subalgebra

Z = Z0 ⊕ Z1 = O⊕ ∧2d+1W ⊂ Cliff(W)

is central (and moreover Cliff(W) is the centralizer of Z in Cliff(V )), and the

morphism

ζ : Z = SpecP(V ∨)(Z) → P(V ∨)

is the double covering branched along the classically projective dual quadric

Q∨ ⊂ P(V ∨).

Note that Z is a smooth quadric of dimension 2d+1. We consider the Z/2-

action on Z generated by the involution of the double covering. Note that it

is induced by the natural Z/2-grading of Z. The sheaf of algebras Cliff(W) is
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a module over Z, hence there is a sheaf of algebras R of rank 22d on Z such

that

Cliff(W) ∼= ζ∗R.

Furthermore, the direct sum decomposition Cliff(W) = Cliff0(W) ⊕ Cliff1(W)

provides Cliff(W) with the structure of a Z/2-graded Z-module, hence provides

the algebra R with a Z/2-equivariant structure. By definition the invariant

part of ζ∗R is

(3.6) (ζ∗R)
Z/2 ∼= Cliff0(W),

hence there is an equivalence of categories

(3.7) φ : Db(Z,R)Z/2 ∼−→ Db(P(V ∨),Cliff0(W)), F �→ (ζ∗F)
Z/2,

between the Z/2-equivariant derived category of R-modules on Z and the

derived category of Cliff0(W)-modules on P(V ∨).

3.3. Morita triviality of R. The sheaf of algebras R is Azumaya by [7,

Proposition 3.15]. We claim it is in fact Morita trivial. Indeed, let S+ and S−
be the two 2d-dimensional half-spinor modules for Cliff0(V ) (which appeared

earlier as the half-spinor representations of Spin(Q)). Then the sum

(3.8) S = S+ ⊕ S−

is naturally a Cliff(V )-module, and hence by restriction a Cliff(W)-module

as well. In particular, it is a Z-module, hence gives a vector bundle on Z.

Moreover, the action of Z0 preserves the summands, and the action of Z1 swaps

them, so thinking of the direct sum decomposition (3.8) as a Z/2-grading, we

see that this provides S with the structure of a Z/2-equivariant Z-module, i.e.,

a Z/2-equivariant vector bundle on Z. Since S is also a Cliff(W)-module, we

see that there is an object S∨
Z of Db(Z,R)Z/2 such that

(3.9) ζ∗S
∨
Z
∼= (S+ ⊕ S−)⊗ OP(V ∨) and (ζ∗S

∨
Z)

Z/2 ∼= S+ ⊗ OP(V ∨).

Actually, S∨
Z is the dual spinor bundle (of rank 2d) on the smooth odd-

dimensional quadric Z (of dimension 2d+1), hence the notation. Indeed, this

follows easily from Kapranov’s semiorthogonal decomposition of the quadric Z

(see the proof of Lemma 2.4) since by (3.9) the sheaf S∨
Z is semi-

orthogonal to OZ(1), OZ(2), . . . , OZ(2d+ 1).

Since the bundle S∨
Z is an equivariant R-module on Z, we have a natural

equivariant morphism R → End(S∨
Z), which is fiberwise injective because R

is an Azumaya algebra, and hence is an isomorphism because the ranks of

the source and the target are both equal to 22d. Consequently, we have an

equivalence

(3.10) μ : Db(Z)Z/2 ∼−→ Db(Z,R)Z/2, F �→ F ⊗ S∨
Z .
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3.4. Root stack decomposition. The equivariant category Db(Z)Z/2

can be considered as the derived category of the quotient stack [Z/(Z/2)],

i.e., of the root stack of P(V ∨) along Q∨. Consequently, by [10, Theorem 4.1]

(see also [2] and [4, Theorem 1.6]) it has a semiorthogonal decomposition

(3.11) Db(Z)Z/2 = 〈Db(Q∨),Db(P(V ∨))〉

with the embedding functors given by

αQ : Db(Q∨) → Db(Z)Z/2, F �→ j∗F ⊗ χ,(3.12)

where j : Q∨ → Z is the embedding of the ramification divisor and χ is the

nontrivial character of the group Z/2, and by

αP : Db(P(V ∨)) → Db(Z)Z/2, F �→ ζ∗F,(3.13)

where ζ∗F is given the natural equivariant structure.

Combining (3.3) with (3.7), (3.10), and (3.11), we obtain a P(V ∨)-linear

semiorthogonal decomposition

(3.14) Db(H(Q)) = 〈Φ(Db(Q∨)),Ψ(Db(P(V ∨))),

h∗
Q(D

b(P(V ∨)))(H), . . . , h∗
Q(D

b(P(V ∨)))((2d− 1)H)〉.

The embedding functors Φ and Ψ of the first two components are discussed

below.

3.5. Rewriting the functor Ψ. By the construction in §§3.1–3.4 above,

the second component of (3.14) is embedded by the functor

Ψ = γ ◦ φ ◦ μ ◦ αP : Db(P(V ∨)) → Db(H(Q)),

where the factors are defined by (3.4), (3.7), (3.10), and (3.13). Note that

each of the factors is a Fourier–Mukai functor, hence so is their composition Ψ.

Below we describe its kernel object. We consider the commutative diagram

(3.15)

Z

ζ

��

H(Q)
i ��

πQ

��

hQ

��

H
h ��

π

��

P(V ∨)

Q
f

�� P(V )
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with cartesian square. The functor Ψ is given by

F �→ h∗
Q

(
ζ∗
(
ζ∗F ⊗ S∨

Z

)Z/2
)
⊗Cliff0(W) CS

∼= h∗
Q

(
F ⊗ (ζ∗S

∨
Z)

Z/2
)
⊗Cliff0(W) CS

∼= (h∗
QF ⊗ S+)⊗Cliff0(W) CS,

where we used the equivariant projection formula for the first isomorphism,

and (3.9) for the second. This means that the Fourier–Mukai kernel for Ψ is

the object

S+ ⊗Cliff0(W) CS ∈ Db(H(Q)).

To compute it, we use the resolution (3.5) and obtain on H a distinguished

triangle

(3.16) S+ ⊗Cliff0(W) (O(−H)⊗ Cliff0(W)) → S+ ⊗Cliff0(W) (O⊗ Cliff1(W))

→ i∗(S+ ⊗Cliff0(W) CS)

with the first map induced by the Clifford multiplication. The first term is

evidently isomorphic to S+ ⊗ O(−H). For the second note that

(3.17)

S+ ⊗Cliff0(W) Cliff1(W) ∼= S+ ⊗Cliff0(V ) (Cliff0(V )⊗Cliff0(W) Cliff1(W))

∼= S+ ⊗Cliff0(V ) Cliff1(V )

∼= S−.

Here the first isomorphism is evident. The second is induced by Clifford

multiplication; its surjectivity is evident, and its injectivity follows from the

fact that Cliff1(W) is locally projective over Cliff0(W); see [7, Lemma 3.8].

Finally, the last isomorphism follows from the standard isomorphisms

Cliff0(V ) ∼= End(S+)⊕ End(S−)

and

Cliff1(V ) ∼= Hom(S+, S−)⊕Hom(S−, S+).

Hence the second term in (3.16) is isomorphic to S− ⊗ O. Thus, we can

rewrite (3.16) as

(3.18) S+ ⊗ O(−H) → S− ⊗ O → i∗(S+ ⊗Cliff0(W) CS)

with the first map induced by the Clifford multiplication.

On the other hand, on P(V ) we have exact sequences (2.7). Pulling the

second of them back via π : H → P(V ) and using the base change isomorphism

for the square in diagram (3.15), we deduce an isomorphism

i∗(S+ ⊗Cliff0(W) CS) ∼= π∗(f∗(S+(H))) ∼= i∗(π
∗
Q(S+(H))).
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Since i is a closed embedding and π∗
Q(S+(H)) is a coherent sheaf, it follows

that

S+ ⊗Cliff0(W) CS ∼= π∗
Q(S+(H)).

In summary, we conclude that the second component of the semiorthogonal

decomposition (3.14) is embedded via the functor

(3.19) Ψ: Db(P(V ∨)) → Db(H(Q)), F �→ h∗
QF ⊗ π∗

Q(S+(H)).

3.6. An equivalence between Db(Q∨) and Db(Q)�. Next, we relate the

functor Ψ to the decomposition (2.2) of H(Q). Note that this decomposition

takes the form

(3.20) Db(H(Q)) = 〈Db(Q)�, δ∗(Q1(H)�Db(P(V ∨))),

δ∗(Q2(2H)�Db(P(V ∨))), . . . , δ∗(Q2d−1((2d− 1)H)�Db(P(V ∨)))〉,

where Q1 = 〈S+,O〉 and Q2 = · · · = Q2d−1 = 〈O〉 are the Lefschetz components

of Db(Q) given by Lemma 2.4. Since the sheaf S+(H) is one of the two

exceptional objects generating Q1(H), the image of the functor Ψ is contained

in the component δ∗(Q1(H)�Db(P(V ∨))) of (3.20). Furthermore, it follows

that we can rewrite the components in the Lefschetz part of (3.20) as

δ∗(Q1(H)�Db(P(V ∨))) = 〈Ψ(Db(P(V ∨))), h∗
Q(D

b(P(V ∨)))(H)〉, and

δ∗(Qi(H)�Db(P(V ∨))) = h∗
Q(D

b(P(V ∨)))(iH), for i ≥ 2.

Comparing this with decomposition (3.14), we conclude there is a P(V ∨)-lin-

ear equivalence

(3.21) Db(Q∨) 	 Db(Q)�.

This equivalence is induced by the functor

Φ = γ ◦ φ ◦ μ ◦ αQ : Db(Q∨) → Db(H(Q)),

where the factors are defined by (3.4), (3.7), (3.10), and (3.12). Note that each

of the factors is a Fourier–Mukai functor, hence so is their composition Φ. This

shows that condition (2.4) is fulfilled.

Let us describe the Fourier–Mukai kernel for Φ explicitly. We consider the

commutative diagram

(3.22)

H(Q,Q∨)
h̃ ��

g̃

��

Q∨

g

��

j

��

H(Q)
hQ

�� P(V ∨) Z
ζ

��
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with cartesian square, where g : Q∨ → P(V ∨) is the inclusion of the branch di-

visor of the double covering ζ : Z → P(V ∨) and H(Q,Q∨) is the fiber product.

The functor Φ is given by

F �→ h∗
Q

(
ζ∗
(
(j∗F ⊗ χ)⊗ S∨

Z

)Z/2
)
⊗Cliff0(W) CS

∼= h∗
Q

(
ζ∗j∗

(
F ⊗ j∗(S∨

Z ⊗ χ)Z/2
))

⊗Cliff0(W) CS

∼= h∗
Qg∗

(
F ⊗ (j∗S∨

Z ⊗ χ)Z/2
)
⊗Cliff0(W) CS

∼= g̃∗h̃
∗
(
F ⊗ (j∗S∨

Z ⊗ χ)Z/2
)
⊗Cliff0(W) CS,

where the first isomorphism is the equivariant projection formula, the second

is evident, and the third is base change. This means that the kernel object

for Φ is isomorphic to

(3.23) E := h̃∗
(
(j∗S∨

Z ⊗ χ)Z/2
)
⊗Cliff0(W) g̃

∗CS

on H(Q,Q∨).

To complete the proof of case (1) of Theorem 1.1, we will rewrite the

formula for the kernel object E and then use it to verify condition (2.5).

3.7. Rewriting the kernel E. Note that by definition from §3.3 the

bundle j∗S∨
Z in (3.23) is the cokernel of the natural map

(S+ ⊕ S−)⊗ g∗Z1 → (S+ ⊕ S−)⊗ O

induced by the action of Z1 ⊂ Cliff1(W) ⊂ Cliff1(V ) ⊗ O on (S+ ⊕ S−) ⊗ O.

Since this action swaps the grading and Z1
∼= det(W) ∼= O(−H ′), it follows

that on P(V ∨) we have two exact sequences

0 → S− ⊗ O(−H ′) → S+ ⊗ O → g∗((j
∗S∨

Z)
Z/2) → 0,

0 → S+ ⊗ O(−H ′) → S− ⊗ O → g∗((j
∗S∨

Z ⊗ χ)Z/2) → 0,

with the first morphisms given by the Clifford multiplication. Comparing

these sequences with (2.7) for the spinor bundles S′+ and S′− on Q∨ ⊂ P(V ∨),

we obtain isomorphisms

(j∗S∨
Z)

Z/2 ∼= S′−(H
′) and (j∗S∨

Z ⊗ χ)Z/2 ∼= S′+(H
′).

Combining this with the formula (3.23) for E, we find that E can be rewritten

as

(3.24) E = h̃∗S′+(H
′)⊗Cliff0(W) g̃

∗CS ∈ Db(H(Q,Q∨)).
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To rewrite this further, we consider the spaceH(P(V ), Q∨) = H×P(V ∨)Q
∨,

which fits into a commutative diagram

H(Q,Q∨)
ı̃

��

g̃

��

h̃

��

π̃

		

H(P(V ), Q∨)

gH

��

pr2
��

pr1





Q∨

H(Q)
i ��

πQ

��

H

π

��

Q
f

�� P(V )

where the squares are cartesian by the definitions of H(Q) and H(Q,Q∨).

Using the projection formula and base change, we compute

ı̃∗E ∼= pr∗2(S
′
+(H

′))⊗Cliff0(W) ı̃∗g̃
∗CS ∼= pr∗2(S

′
+(H

′))⊗Cliff0(W) g
∗
H(i∗CS).

Using the resolution (3.5) of i∗CS and taking into account that

S′+ ⊗Cliff0(W) Cliff1(W) ∼= S′−

(which follows from (3.17) and the resolutions (2.7) for S′±), we obtain an

exact sequence

0 → pr∗1OP(V )(−H)⊗ pr∗2S
′
+(H

′) → pr∗1OP(V ) ⊗ pr∗2S
′
−(H

′) → ı̃∗E → 0

onH(P(V ), Q∨), where the first map is induced by the Clifford multiplication.

It follows that E is a sheaf on H(Q,Q∨), which fits into an exact sequence

π̃∗OQ(−H)⊗ h̃∗S′+(H
′) → π̃∗OQ ⊗ h̃∗S′−(H

′) → E → 0,

where the first map is induced by the Clifford multiplication. Consider the

diagram

S− ⊗ π̃∗OQ(−H)⊗ h̃∗OQ∨ ��

����

S+ ⊗ π̃∗OQ ⊗ h̃∗OQ∨

����

π̃∗OQ(−H)⊗ h̃∗S′+(H
′) �� π̃∗OQ ⊗ h̃∗S′−(H

′),

where the vertical arrows are induced by (2.7) (hence surjective), and the hor-

izontal arrows are induced by the Clifford multiplication (hence the diagram

commutes). By (2.6) the image of the top horizontal arrow is the bundle

π̃∗S+ ⊗ h̃∗OQ∨ on H(Q,Q∨), hence we obtain an exact sequence

π̃∗S+ ⊗ h̃∗OQ∨ → π̃∗OQ ⊗ h̃∗S′−(H
′) → E → 0
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on H(Q,Q∨). Therefore, we have on Q×Q∨ an exact sequence

(3.25) 0 → S+ � OQ∨ → OQ � S′−(H
′) → ε∗E → 0,

where ε : H(Q,Q∨) → Q×Q∨ is the natural embedding.

3.8. Lefschetz center. To complete the proof of Theorem 1.1 in case (1),

we verify condition (2.5), i.e., check that the functor

Φ∗ ◦ π∗
Q : Db(Q) → Db(Q∨)

takes the Lefschetz center Q0 of Q (see Lemma 2.4) to that of Q∨. It suffices

to check that Φ∗◦π∗
Q takes the generators OQ and S+ of Q0 to some generators

of the Lefschetz center of Db(Q∨).

For this, note that

πQ∗ ◦ Φ: Db(Q∨) → Db(Q)

is the Fourier–Mukai functor given by the kernel ε∗E ∈ Db(Q × Q∨), so its

left adjoint functor Φ∗ ◦ π∗
Q is given by the kernel (ε∗E)

∨ ⊗ p∗ωQ, where

p : Q × Q∨ → Q is the projection and ωQ is the dualizing complex of Q.

By (3.25) we have a distinguished triangle

(ε∗E)
∨ ⊗ p∗ωQ → ωQ � S′∨− (−H ′) → (S∨

+ ⊗ ωQ)� OQ∨ .

It follows that Φ∗(π∗
Q(Q0)) is the subcategory generated by S′∨− (−H ′) and OQ∨ .

From (2.8) it follows that S′∨− (−H ′) ∼= S′± (depending on parity of d), hence

this subcategory coincides with the Lefschetz center of Db(Q∨). This proves

condition (2.5), and since together with condition (2.4) proved in §3.6 it is

equivalent to the HPD statement, this completes the proof of case (1) of

Theorem 1.1.

3.9. Other types of quadrics. We deduce the other cases of Theo-

rem 1.1 by using a general result on the behavior of HPD under linear pro-

jection. This result can be phrased in simple terms by saying that linear

projections on one side of HPD correspond to taking hyperplane sections on

the other. The following rigorous formulation of this result is a special case

of [1, Theorem 1.1]; see also [12, Proposition A.10 and Remark A.12] for a

quick proof in the context considered here.

Theorem 3.1. Let f̃ : X → P(Ṽ ) be a Lefschetz variety with Lefschetz

center A0. Let Ṽ → V be a surjection with kernel K such that f̃−1(P(K)) is

empty, so that the composition

f : X
f̃−−→ P(Ṽ ) ��� P(V )

is a regular morphism providing X with the structure of a Lefschetz vari-

ety over P(V ) with Lefschetz center A0. Assume that the Lefschetz variety

f : X → P(V ) is moderate.
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If f̃ � : X� → P(Ṽ ∨) is a Lefschetz variety with Lefschetz center B0 which

is HP dual to f̃ : X → P(Ṽ ), then the derived fiber product

f � : X� ×P(Ṽ ∨) P(V ∨) → P(V ∨)

obtained by base change along the natural embedding P(V ∨) ⊂ P(Ṽ ∨) has the

structure of a Lefschetz variety with Lefschetz center the image of B0 under

the restriction functor

Db(X�) → Db(X� ×P(Ṽ ∨) P(V ∨)).

Moreover, when equipped with this Lefschetz structure,

f � : X� ×P(Ṽ ∨) P(V ∨) → P(V ∨)

is HP dual to f : X → P(V ).

Let us prove case (3). Let f : Q → P(V ) be a double covering of an even-

dimensional quadric Q. Choose an embedding f̃ : Q → P(Ṽ ) as a hypersur-

face. Then f is the composition of f̃ with a linear projection P(Ṽ ) ��� P(V )

from a point of P(Ṽ ) which does not lie on f̃(Q). Let K ⊂ Ṽ be the corre-

sponding one-dimensional subspace, so that V = Ṽ /K.

By case (1) of Theorem 1.1 proved in §§3.1–3.8, we know that Q∨ ⊂ P(Ṽ ∨)

is HP dual to Q ⊂ P(Ṽ ). Therefore, by Theorem 3.1 we find that

Q∨ ×P(Ṽ ∨) P(V ∨) → P(V ∨)

is HP dual to Q → P(V ). Note that Q∨ ×P(Ṽ ∨) P(V ∨) is projectively dual to

the branch divisor of Q → P(V ). This proves case (3) of Theorem 1.1.

Since the operation of HPD is a duality (see [6, Theorem 7.3] or [15, The-

orem 8.9]), this also proves case (2) of the theorem.

Finally, let us prove case (4). Let f : Q → P(V ) be a double covering

of an odd-dimensional quadric Q. Choose an embedding f̃ : Q → P(Ṽ )

as a hypersurface. Then f is the composition of f̃ with a linear projec-

tion P(Ṽ ) ��� P(V ) from a point of P(Ṽ ) which does not lie on f̃(Q).

LetK ⊂ Ṽ be the corresponding one-dimensional subspace, so that V = Ṽ /K.

Applying case (2) of Theorem 1.1 proved above, we deduce that the dou-

ble cover (Q∨)cov → P(Ṽ ∨) branched along the projective dual Q∨ ⊂ P(Ṽ ∨)

is HP dual to Q ⊂ P(Ṽ ). Thus, using Theorem 3.1 again, we find that

(Q∨)cov ×P(Ṽ ∨) P(V ∨) → P(V ∨) is HP dual to Q → P(V ). Note that

the variety Q∨ ×P(Ṽ ∨) P(V ∨) is projectively dual to the branch divisor of

Q → P(V ), and that (Q∨)cov ×P(Ṽ ∨) P(V ∨) → P(V ∨) is the double cover

branched along Q∨ ×P(Ṽ ∨) P(V ∨). This proves case (4) of Theorem 1.1. �
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Remark 3.2. We finish the paper by noting that the HPD kernel E in all

the cases of Theorem 1.1 fits into an exact sequence

0 → S� OQ∨ → OQ � S′(H ′) → ε∗E → 0,

where ε : H(Q,Q∨) → Q × Q∨ is the embedding, S and S′ are appropriate

spinor bundles on Q and Q∨, and the first morphism is the composition of

(the pullback from Q of) the natural embedding of S into the half-spinor

representation with (the pullback from Q∨ of) the surjection from the half-

spinor representation onto S′(H ′) (see (2.6) and (2.9)). Indeed, in case (1)

this was already shown in (3.25). Further, in case (3) the HPD kernel is

obtained by restriction, hence (2.11) shows that the above formula is still

true. Further, in case (2) the HPD kernel is obtained by transposition and

dualization, hence (2.8) and (2.10) imply the formula. Finally, in case (4) the

HPD kernel is again obtained by restriction, so we again conclude by (2.11).
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